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ABSTRACT

A new approach is described to the connection of wave amplitudes across

the turning points and singular points of second-order, linear, analytic,

ordinary differential equations which can describe the modulation of physical

waves or oscillators. The general class of singular points thereby defined

-(Section 2) contains many irregular ones of greater complexity than have been

accessible before; however, genuine coalescence of singular points is not here

considered. The asymptotic connection formulae are shown to result directly

from the branch structure of the singular point ('Viton 3)' indeed, to a

first approximation, they reflect merely the gross, local branch structure.

The proof (Section 4),,relates the local structure of the solutions at the

singular po*int to the asymptotic wave structure by a limit process justified

by symmetry bounds.

AMS (MOS) Subject Classifications: 34E20, 41A60, 30E15

Key Words: Schroedinger equation, oscillator modulation, WKB-connection,

turning point.

work Unit Number 2 - Physical Mathematics

Lawrence Livermore Laboratory, Livermore, California 94550.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The
work was supported partially by the National Science Foundation under Grant
Nos. MCS-7700097 and MCS-8001960 and by the Wisconsin Alumni Research
Foundation.

,7 ,



SIGNIFICANCE AND EXPLANATION

This work concerns the modulation of waves or oscillating systems, which

pervade all the science and engineering disciplines. Modulation occurs when

waves travel through an inhomogeneous material in which the local propagation

velocity differs from place to place, but the differences are small over a

distance of only a wavelength -- a very common case in the sciences and

engineering. The resulting change to the waves is mostly gradual, but

occasionally drastic, as at a shadow-boundary, where oscillation turns into

decay and quiescence over just a few wavelengths. When this phenomenon can be

analyzed via an ordinary differential equation, such a boundary is called a

transition point.

At first, only the simplest transition points representing the most

typical shadow boundaries were studied. But then some phenomena, such a wave

reflection and scattering cross-sections, came to be traced to hidden

transition points that become visible only when real distance (or time) is

embedded in its complex plane. When the material properties vary in a general

manner, (which can often be observed only incompletely) the hid,'en ransition

points can have arbitrarily complex structure. The following 3 ,eents a

new, more direct and more general approach to the connection of waves and

shadows across transition boundaries. It aims to furnish a basis for more

efficient wave scattering calculations.

I° F_ 115 /m . . '1

The responsibility for the wording and views exprebv--6,-i~n thlis.i_.°iripti.,fi.,
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CONNECTION FOR WAVE MODULATION

R. E. Meyer and J. F. Painter

1 . Introduction

The semi-classical Schroedinger equation

(1) £
2
d
2
w/dz

2 
+ p w(z) - 0

with small parameter E and analytic coefficient function p(z) is central

to a vast class of oscillation and wave modulation problems in physics and

other sciences. Particular interest, especially for scattering theory,

attaches to the "WKB" problem of connecting the wave-approximations to

solutions across roots or singular points of p(z). The following introduces

a connection method which is simpler and more general than any advanced before

[Zwaan 1919, Langer, 1931, Painter and Meyer 1981]. Simplification and

clarification of connection theory is, in fact, the whole objective of the

study to be reported, and generalization was used only as a help towards it.

One reason why this objective has proved elusive over the generations may

be that the general, second-order, linear differential equation, of which (1)

is the normal form, encompasses too many disparate phenomena. The present

study focuses on only those forms of (1) which are genuine Schroedinger

equations in the sense that they can describe the modulation of physical waves

or oscillators. This subclass is characterized in Section 2 in terms of its

adnissible (turning-point and) singular-point structure. To attempt only one

step at a time, moreover, genuine coalescence oF singular points is excluded.
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This leaves a large class of singular points, none the less, because the

potential functions p(z) of (1) in the sciences must be defined, it not by

speculation, then by measurement, in which case they can be known only

imperfectly. In addition, it has long been recognized that scattering

matrices may depend greatly on singular points of p(z) away from the real

axis of time or space, in which case there are scant physical grounds for

restricting their nastiness. The characterization of p(z) cannot therefore

be very specific and must include arbitrarily irregular points of (1).

Certainly, multi-valued functions p(z) must be the norm, rather than the

exception. All the same, modulation implies a certain structure (Section 2).

The multi-valuedness of p(z) in (1) implies that the solutions w(z)

must normally be multi-valued, and the main thesis to be propounded is that

this multi-valuedness is the source of the connection problem and that the

asymptotic connection formulae solving it are a direct manifestation of the

branch structure of the potential p(z) at the singular point. This

fundamental view of connection is adopted also by Olver [1974, pp. 481, 482]

for regular and isolated singular points. Our objective is to show how it can

be extended to large classes of very irregular ones and what new insights into

the nature of connection emerge therefrom.

To obtain ammunition for this thesis, local solution representations near

the singular point have been developed in a companion paper [Meyer and Painter

1982, hereafter referred to as IPM] and are summarized in Section 3. They

focus on a particular fundamental system ys, Ym of (1) in which ym has a

milder singularity than y. which, in turn, contains no additive multiple of

y This makes the pair a characteristic representation of the branch

structure of the singular point. The representation is a local one, in the

-2-
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first place, but turns out to have a striking two-scale structure: in the

framework of a natural, independent variable x (Section 2), the solutions do

not depend on the complex parameter c in (1) separately, but only on the

variables x and Ex. A key property of the representations is that they are

global in the oscillation variable x, even though only local in the

modulation variable Ex, and can be extended to similar bounds on a loss of

symmetry of the solutions with increasing distance from the singular point.

To document the thesis, these symmetry bounds are shown in Section 4 to

admit a class of limit processes in which both lxi + - and lexi + 0 and

furthermore, the symmetry of y. and ym is essentially preserved. In other

words, asymptotic approximation of WKB-type characterized by dominance and

recessivity is shown to become available before local structure has been

lost. Existence of such limit processes translates immediately local

information on the structure of ys and y. at the singular point into

information on the multivaluedness of their asymptotic wave-represenation.

But, the latter information is what connection theory seeks.

To make our point, it will be sufficient to document it in the generic

case, leaving aside the "Frobenius exceptions" [Olver 1974 pp. 150] which

involve logarithmic branch points for regular points and consequent loss of

the symmetry bounds, in the general case. The validity of the final

connection formulae (Section 4) for the exceptional cases is strongly

indicated by the results of Painter and Meyer [19811, but the approach adopted

in the following seems unsuited for a simple proof. It is also sufficient to

document our point at the instance of the first asymptotic approximation,

which connects the wave-amplitudes, and attention will be restricted to it. A

more exhaustive description may be thought desirable for the sake of

completeness, and most of all, error bounds are desirable. It may be noted

-3-
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that the representations used are obtained by the standard method of Volterra

integral equations, which is precisely the method leading to effective error

hounds [Olver 1974]. The sketch of the representation method given in Section

3 makes clear that such bounds would emerge in terms of pointwise and integral

bounds on a certain irregularity function *(Cx) arising in the

characterization of the singular point (Section 2). In the general case,

however, that function is barely specified and can tend to zero with ex

arbitrarily slowly, so that it appears doubtful whether the bounds would give

much satisfaction to the numerical analyst. Mo~st of all, however, we suspect

that the present proof of connection may not remain the simplest one for long,

in which case present attention to error bounds and higher approximations may

be premature.

2. Modulation Equations

Equation (1)

C d 2w/dz 2+ p(zIC)w(z) = 0

is one of a large family of normal forms of the general, linear, second-order

differential equation and constructive general statements are difficult in

such an indefinite frame. By constrast,

dx/dz ! p/2/

defines the Lionville-Green or WB or Langer variables x and ex based on

the local wavelength or period, which have long been recognized as the natural

ones for wave modulation. Physical specifications, e.g. for scattering,

relate directly to them and if z differs substantially from x, it can at

best measure distance in legal units. The natural formulation of physical

problems of wave modulation is therefore in terms of x or ex, from the

start, which will avoid the extraneous difficulty of descrihing the global

-4-



transformation between ex and z, which has no physical significance and

can be a very complicated, multi-valued map.

The exclusion of coalescence, in order to confine attention to one

singular point at a time, restricts not their total number, but only how fast

they can approach each other as C + 0. Wen this is not fast enough to

introduce genuine coalescence, a rescaling [Meyer and Guay 1974] permits the

elimination of the main e-dependence from U(z;E) and therefore, not much

generality is lost by ignoring the residual E-dependence. for simplicity,

p(z) will accordingly be taken independent of C in what follows.

The main property distinguishing the wave modulation equations among the

larger class of equations (1) is that the natural variable x must be

definable, for otherwise, not even the concepts of wavelength or period could

exist for (1). An additional requirement arises as follows. If p/2 be non-

integrable at a singular point, then that point is seen to correspond to no

x e C and hence, represents not a genuine singularity but a device for re-

interpreting radiation conditions as a singular point in the z-planes. Such a

device has been used at times in quantum mechanics, but is excluded here to

concentrate on the class of genuine singularities of modulation. For that

class, the singular point of (1) must correspond to a definite point x.

without loss of generality, both will be identified with this origin.

For an effective formulation of this notion of the most general wave

modulation equation (short of coalescence), it should be expressed in terms of

the natural variable x. Accordingly, the following is based on the premise

that a branch r(x) of p is definable as an analytic function on a

punctured neighborhood of x = 0 which is a Riemann surface including the

interval (-W,2w) of arg x so that

(2) i dz/dx = r 2

-5-



is integrable at x 0. (In conventional, turning-point terminology, such a

Riemann surface element comprises three adjacent Stokes sectors.)

When the Schroedinger equation (1) is transformed to the natural variable

by, say, simply setting

w(z) = y(x)

it takes the form

(3) y" + 2r- r y' - y 0

which shows that the wave development is controlled by the "modulation

function"

r'(x)/r(x) = (ic/2)d(p )/2)/dz

rather than by the potential function p(z) directly. This illuminates why

it has long been known that the singular points of (1) should really include

the roots of p(z) ("turning points"). It is also seen that the modulation

function has a particular structure: since p(z) = r4  is a function of z

independent of E, it follows from (2) that Ex is also such a function and

in turn, that xr'/r depends on x and C only through the product Ex. A

secondary hypothesis to be now adopted, because it simplifies the theory of

connection, is that a limt of xr'/r as cx + 0 can be identified,

(4) xr'/r + Y e C as Ex + 0

uniformly in the Riemann surface sector A of cx in which xr'/r is

defined locally near cx = 0. These two hypotheses also define the framework

of the analysis of [IPM]. A statement equivalent to (4) is that the (fourth

root of the) potential r(x) can be written in the form

(5) p/4= r(x) = x Yp(Ex)

where P(&) is a function analytic on the Riemann surface element A with

the property

-6-



(6) (/p)dp/d& = +() 0 as & 0

uniformly in A, because (Ex) xr'/r - Y.

To make the structure of the theory more readily apparent, it will help

to abbreviate the notation by the convention that a function symbol such as

g(x) is always understood to denote a function of both x and Ex. By

constrast a Greek symbol such as *(E) will always denote a function of

= cx only. If such a function has the property (6),

(t/f)d*/dE + 0 as & + 0

uniformly in A, then it will be called mild; it implies that V( )

varies near = 0 less than any non-zero real power of :

vv > 0, 0 as 0 ,

In particular, the limit Y postulated in (4) is thus seen from (5) to

represent the exponent of the "nearest power" of x in the (fourth root of

the) potential, and the basic integrability premise defining physical

Schroedinger equations implies
I

ReY 4-

The general class of singular points of Schroedinger equations thus

defineA includes very irregular ones, in addition to all the turning points

covered in the literature [Painter and Meyer 1981]. For Langer's [1931] class

of fractional turning points,

2Y/(2Y-1) (p(z]1/2

is analytic and nonzero at z = 0,

)= , " (1-2Y)n

n- nn= 1

and the solutions of (1) and (3) are approximable in terms of Bessel functions

[Langer 1931, Olver 1977]. For othe' singular points, however, no simple

approximands in terms of ---icp -inctions appear likely. Local

-7-
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approximations have been constructed in (IPM] to provide support for the

present study even under the vague assumptions just sketched, which admit

functions ( ) of arbitrary multivaluedness and approaching zero as * 0

more slowly than any definite function. Similarly, the coefficient functions

p(z) in (1) here admitted can be of great complexity, especially when several

irregular singular points are present, and a useful global description appears

unlikely in the general case. Locally, however, the class of potential

functions p(z) can be described by

z 1 
fzp(t)/p(z)2 dt + 1 - 2Y as z + 0

As indicated in the Introduction, the conceptual key to connection lies

in the two-variable structure of the Schroedinger equation emerging from (2)

to (4). It should not have surprised us as much as it did, for it is already

apparent in (1) that the independent variable plays two distinct physical

roles. The first term in (1) represents the oscillatory mechanism and its

independent variable is clearly z/E, with local wavelength as natural unit,

prompting the transformation to

(7) x .fz ,/p(t~dt•

By contrast, p(z) represents the potential and its variation, which is not

dependent on the presence of waves, and the role of z in it is therefore a

different one. The formulation sketched in this Section adds the insight that

the dependence on the modulation variable z ++ ex = enters into the

Schroedinger equation (3) only through a relatively minor term

f(Cx) = xr'/r - Y

in the modulation function r'/r. This function * has been called

"irregularity function" in [IPMJ because * 0 characterizes the regular

singular points.

-8-



The critical role of this two-variable structure will emerge in Section 4

which is devoted to a proof that connection across singular points is a

mathematical process local in ex, even though asymptotic in x. This is,

perhaps, the main new insight gained by extending the fundamental view of

connection of Olver [19741 to irregular singular points. It explains why a

merely local definition of (lCx) - - and thereby, of the potential and of the

Schroedinger equation - - on a Riemann surface element

A = (ex: -w 4 arg(Cx) 4 2w, 0 < JCxI < E for some E > 0)

turns out sufficient. (For notational convenience, E is adjusted so that

t(Ex) is analytic up to the rim of the element and hence, bounded on A.)

In a shortwave limit E + 0, that entails little restriction on the

corresponding domain D of x. On account of the two-variable structure,

moreover, a shortwave limit must be a limit ex + 0. Hindsight, of course,

makes all of this appear foreshadowed in the structure of (1), where the

first, oscillation term is defined globally in z/C, even if the potential

p(z) be defined only locally.

3. Branch Structure

It will help to summarize now the result of [IPM] used in the proof of

connection in Section 4 and to indicate their motivation. If a limit E + 0

is taken at fixed x, then O(lx) + 0, by (5), and (3) approaches a form of

Bessel's equation (which observation started Langer's [1931) work). Its

singular point is regular with Frobenius exponents 0 and 1-2Y ) 0. If

1-2Y is not an integer, that implies solutions fs(x) and x -2yf (x) withm

entire functions f., fm (and fs(0) fm(O) = 1), which turn out to depend

only on x2 . Integer vdlues of - - Y correspond to the Frobenius exceptions
2

for which only fm(x) is entire.

mm -0-



It is plausible that (3) may have an analogous fundamental system

(ys,ym) when e 0 0, which displays the branch structure of the irregular

singular point most clearly. If ym/ys * 0 as x * 0, then YB has there

the stronger singularity and it appears natural to call it the stronger

solution and ym, the milder. Such a system has been constructed [IPM] to

obtain a representation of the branch structure at the general irregular point

of wave modulation and in particular, to find out what replaces the entire

functions f s fm and to explore how departure from entirety can be

characterized. The underlying idea emerges most simply in the following

construction of ys(x) for 2 Re Y -

Since (3) can be written (r2y')' r2y, a simple Volterra equation

associated with it is

y'(x) = [r(x)J-2 fx[r(v)]2y(v)dv

(8)

y(x) = 1 + x y'(v)dv
0

By (5), a simple 'terative approach to (8) is by a sequence (b (x)} such

that

db+l fx .P(Ev)]2 v 2Y

(9)
b0 -- 1, bn(0) = 0 for n ;'1

and since P(t) is a mild function, it can be estimated at the expense of a
small power. It emerges readily in this way, by estimation of b' from (9)

n
and (6) and thence, bno recursively, that

2nb (x) = 8 (-x)(x/2)n n

(10) is (t)I k = r(-m)/Lnr(n-s)]

8 - -Re Y - + lub I u

- 10-



Therefore, if lexi ( E(Y) chosen to assure s < 0, then the rapid decrease

of k' with n documents a majorant series assuring the convergence of
n

b to a solution ys(x) of (3) analytic on the Riemann sector D.

Since ys(0) = 1, 1 b (x) generalizes Frobenius' entire function fs(x), but

the 'coefficients' 0 are generally multi-valued functions of Cx.n

Observe that (10) suggests y =  bn tends to an even function of x

in some sense as Ex 0. This can be made more precise by applying the same

approach to the estimation of lb'(x) + b'(x exp-i)l and thence,
n n

lb (x) - b (x exp-wi)l to show [IPM] thatn n

lbn (x) - bn(xe-'1)I a 6 (lCxJ)n k'Ix/2l
2n

s n

where

(11) 5 (1 1) + 0 as 1&1 + 0
5

These bounds still decrease fast enough with n to be summed to a bound on

the degree of oddness of ys(x) in terms of the modified Bessel function

1 1
I (z) [Olver 1974, p. 60]: For - ) Re Y > - - and x, x exp(-Wi) in D

V 2 2

and lexI 4 E(Y),

(12) lys(x) - ys(xe-i)l 6s(l~xl)r(-s)lx/21 2+sI xl)

Thus ys(x) approaches evenness as lCxl + 0 uniformly on compact subsets of

the cut x-plane. For fixed Cx, on the other hand, ys(x) may lose its

evenness exponentially fast as lxi increases.

A good representation of the milder solution ym(x) of (3) depends on

1 -2Y
identification of the exact function generalizing the factor x of

fm(X). It turns out to be just the function z(x) defined by (2). indeed

[IPM],

(13) z(x) = x 1-2Y C(Cx)

with a mild function f(F) such that

)41 2,(14) (1-2Yp -iC as * 0,

~-11-



Then ym(X)/z(x) = y(x) satisfies a differential equation related to (3) and

1
can be constructed for all Re Y 4 1 by an iteration paralleling that just

sketched to obtain [IPM] a representation

(15) ymlX) = z(x)[1 + ( anlcx)(x/2) 2n

1

with bounds

Q (E)l k n= r(m)/[nnr(m+n)]

where m = 3/2 - Re Y - 62 (txt) > 0 for tCxt 4 another E(Y), since

6 2(IQ) + 0 as jE 0. of course, (E) and a (E) are generally2 n

multivalued functions, but a (0) is defined and nonzero, so thatn

YM/Z - y(x) also tends to an even function as Ex + 0. An oddness bound is

obtained by an estimate paralleling that indicated above:

-Wi
Theorem 4 [IPM]. For x and xe in D and tCxt 4 E(Y),

Iy(x) - y(xe" i)1 4 6 m(lcxl)r(m)lx/212-mmI (lxi)

and 6 (Ilt) + 0 as IE1 + 0.

The same comment therefore applies to ym/z - y as follows (12).

No similarly simple approach has been found yet for the stronger

1
solution y. for Re Y ( - where the simple Volterra equation (8) can, by

(5), be used only at the price of a regularization of the first integral in

(8) . A stronger solution in the sense indicated is defined only up to an

additive multiple of the milder solution, which is undesirable for a

fundamental system displaying clearly the branch structure of the singular

point. The regularization adopted in CIPM] avoids that additive multiple and

constructs a stronger solution of the form

(16) y(x) - 1 + n (Ex)(x/2) 2n

-12-



for all Re Y ( 2, but the estimates of 18 I are more laborious, and less
2 n

close, than for Re > . Indeed, 0 (0) is found to exist for all n
2 2 n

only when - Re Y is not an integer and the near-evenness of ys(x) holds
2

only for them:

1 -ii
Theorem 5 [IPM]. For non-integer - Re Y > 0, x and xe

in D and sufficiently restricted lCxi,

lys(x) - y s(xe-i)1 H C(Y)6s (lrxl)x/2l 2+sI-s ( x),

with s = - Re Y - - + lub Il(uC)l > 0 and 6 (ICI) - 0
2 ue(0,1 s

as +0.

4. Connection

If y(x) satisfies (3), then W(x) = r(x)y(x) satisfies

(17) W" = (I + r"/r)W

and by (4)

(18) r"/r = x-2EY(Y-1) + f(2Y-1 + * + E$'/*)]

so that jr"/rl is integrable along paths in D bounded away from x f 0.

This confirms (Olver 1974, p. 222] existence of a fundamental "WKB" solution

pair

(19) W+(x) - a(x)ex, W_(x) = b(x)e- x

with functions a(x), b(x) analytic on D and bounded for large lxi

(provided, of course, ex e A so that f and tf' are bounded). This

is the fundamental system of (1) most strikingly describing the asymptotic

wave character (undamped on the lines where x is pure imaginary) of the

solutions.

The "amplitude functions" a, b are determined only up to a constant

factor, but apart from that, the decay of Ir"/rI at large Jxi suffices

[Olver 1974, p. 223, 2241 to assure limits for a(x) and b(x) as lxi

1
~-13-
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with arg x any integer multiple of w. Those limits are the well-known wave

amplitudes in the first-order WKB-approximations to the solutions of (1).

Since any solution of (17) must be a linear combination of W+ and W_,

(20) r(x)y,(x) = a (x)ex + (x)e-x

and the same holds with subscript s in place of m, and supposing they can

be normalized satisfactorily, then a "."b are similarly analytic and
m s

bounded for large lxi. Since the lefthand side of (20) has been seen in

Section 3 to be multivalued, not all of a ,... b can be entire, and
s m

symmetry makes it plausible that all of them will usually turn out to be

multivalued. This prompts the question

- - 2lri
am(0 ) - am(0e ?

which is, in fact, a connection question for MM coefficients [Olver 1974,

p. 481].

In view of the many contexts in which connection is important, it is

natural that many different forms of the connection problem are found in the

literature, but most of them can be related to each other with little work,

and a treatise on connection for simple turning points is found in Chapter 13

of [Olver 1974]. In any case, the problem turns on relating the respective

limits which represent the WKB coefficients on different domains, and when it

is recognized that those domains correspond, in the frame of the natural

variable, to sheets of the Riemann surface of the solution, the form of the

connection question just arrived at is seen to be a natural one.

By contrast to the functions a(x), b(x) first mentioned, am(x) and

b (x) are normalized implicitly by the normalization of ym(x)/z(x) - y(x)

and this turns out to introduce an C-dependence into the normalization of

a , b . For fixed c # 0, moreover, lxi is bounded by E/C on them

Riemann sector D on which the differential equation (1) has been defined,

-14-
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and the connection question c-A, therefore be posed only in the limit £ 0.

This aspect is discussed in the Appendix, where it is shown that the functions

a m/(P ) = am (x;cx) and b m/(p) = b (x;cx)

rather than m and b themselves, are certain to have limits as C + 0n m

and jxj + - For an assuredly meaningful connection question, we should

therefore rewrite the identity (20) as

(21) r(x)[P(E)C(E)] 1Y(X) = a(x) ex + b (x) e-x

(with explicit mention of the dependence of am, bm on C ex omitted to

focus attention now on arg x) and ask a (e - a () = ?

Since (21) is an identity in x on D, it holds equally at

x exp(-Wi), if that point is also in D. If exp(-Wi) be abbreviated by

1-Y
j, then since Ym = zy and rz = x PC, by (5) and (13), the identity

[y(x) - y(jx)lx
1 -Ye - lxi = (am(x) - 'b m (X)IeX-lXI

(22)

= [bi nx) - j Y-am(jx)]e-X-lxl

also holds on D. Now let ICxl + 0, but lxi + 0 in such a way that the

lefthand side of (22) still tends to zero. That this does indeed define a

non-empty set of "intermediate limits", in the terminology of singular-

perturbation theory (Eckhaus 19791, is a corollary of Theorem 4 because [Olver

1974, p. 435]

I m(lx) - 12 lxl /2e'xI as Ixl +

and, e.g., lxi = Ilog 6 (ICxI)l will serve.

For the choices arg x = W and arg x = 2W, respectively, such a limit

of (22) yields

i) .y-1a 2ini i li
(23) b (ce i) j am(), am ('e2) - jy'Ib m(Oe)

whence

2s!i Wi
(24) a (ft ) - am () = 21 sin (YI) b (0e )

m m m

i -15-
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The choice arg x - 0 adds

(25) a (0) j Y-1 bm (e-wi

to (23), whence the answer to the connection question for bm  is

(26) b (We i) - b (Oe-w ) = 2i sin(Yw) a (4)
m m m

1
For non-integer - - Re Y, a parallel argument for the stronger solution

2

starts from the identity

r(x)y (x) - a (x)e + bs (Xe -x

analogous to (20) to deduce that the normalization ys(O) - 1, ys(O) = 0

assures boundedness of

a s(x)/P(t) = a (x) and b s(X)/P() b (x)

as + * 0 and leads via the identity (22) with y, m and 1-Y replaced,

respectively, by ys, s and y, by the help of Theorem 5 to the same

connection formulae (24), (26) for a., be in the place of am, bm, because

sint(1-Y)w] = sin(Y). (It is this independence of subscript which makes

(24), (26) more convenient for present purposes than various other relations,

such as a (' exp 2wi) - a (0) exp(-2ywi), also implied by (23) and (25), or

their counterparts for a., b. obtained by replacement of 1-Y by Y.]

With appropriate interpretation, moreover, the same connection formulae

% I 1 S 2 -1I
relate am, b and as, b, respectively, because (P 2) tends to a

definite limit as + 0, by (14), and by (6),

exp f J (M) T- - exp f0  *( Ije )id- 1

Since any solution y(x) of (3) is a linear combination of the fundamental

pair (ye, ym), the functions a(x) and b(x) in the representation

r(x)y(x) - a(x)ex + b(x)e
-x

in terms of the fundamental pair (W+, W_) of (17) are linear combinations of

a a am and b , b respectively, and therefore satisfy (24) and (26) asa' m S m

well. In the limit 0 and with interpretation appropriate to the

-16-
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normalization of y(x), the connection formulae (24) and (26) are therefore a

general corollary of (3) under the two hypotheses of Section 2, at least, as

long as Re Y - - is not a negative integer.
2



Appendix

The somewhat delicate issue of normalization for connection may be

brought under control in two steps* For fixed C, the domain D of x on

which r(x), and hence also the differential equation (17), is defined is a

Riemann sector of radius E(Y)/E. Let the particular functions a, b in (19)

normalized in the manner of Olver [1974. - , .. 220-222] be denoted by a0 ,

b0 . Then a0 [b0 ] = I and a'[b'] = 0 :r 1nt of minD[maxD]Re x, which
0

depends on C, and thus a. = a (x;F), (xr), and the first step will
0 0

be to confirm that their dependence o', L w-akens as C + 0.

Since *(fl) is analytic and boundcd on the Riemann sector A for

0 < l l ' E(Y), the same follows for

x 2II(x) = Y(Y-1) + (2Y-1)0(&) + *2 + W. (E)

= x2 r'/r

in (18) because it tends to Y(Y-1) as = x + 0, by (6). For the basic

connection question of Section 4, it is sufficient to restrict the Riemann

sector D to a disc of the same radius cut along the positive real axis of

x for a 0(x;C), and along the negative real axis, for b 0(x1c). Olver's

[1974, p. 2211 variation function for a0  is

Y(x) = fX (v) l

evaluated along progressive paths, and if such a path keeps distance R from

the origin, then since x 2 is bounded,

(Al) 'Y=O(R- ) as R +

The same holds for the variation function for b0, which differs only in that

the lower limit is + IE/CI. The functions furnish [Olver 1974, p. 221]

bounds
(A2) la0 (xIC) - II, Ia;(xC)l Y(x) - 1 = o(R - )

and similarly, for b0.  If now ICk < I CiI, then D(Ck) D D(C ) and on

-18-
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I I

D(Ei) the solution W+ normalized for D(E.) is a linear combination of

W+, w_ normalized for D( k), thus
a(~.e= a0(x;ek)ex b x ke-X

a0(x; i)e  = Cik x + dik bO(x;ek)e

with constants cik, dik computed from the respective normalization and

bounds to yield
-2 (x+E/Ci )

a0 (x; i) = a0(x;ek){1 + O(Ci)} + b0(x;Ck)e O( )

and on D(C.), Re(x + E/C.) 0. As long as lxi is well bounded away from1 1

0, therefore, a0 (x; i) = a0(x;ek) + O(ei) as lei I + 0, and similarly for

b0 (x;), and by the bounds (AI), (A2), a0  and b0  tend to limits as

jlx + - in D(O).

For the second step, note that the amplitude functions a and b in
in m

(20) are renormalizations of a0  and b0  so that

a(X;E) = A a0(x;E), (xE) = B b 0 )(x)

with coefficients A. B possibly dependent on S. From 120), (5) and (13),

therefore,
1 -Y 1 -y~ x0)" a b e-X]

(A3) x Ym(x)/z(x) = x '(x) (PC) Aa (x;E)e
x + Bb (xic)e I

m 0 0

The differential equation for y(x) is, by (2) and (3),

+ 2(r'/r + z'/z)y' = y

and since the normalization to j(0) - 1, j'(0) = 0 recognized in (15) is

independent of £, i inherits from (rl/r + z'/z)x the property that it

depends on C only through x = x. Like (r'/r + z'/z)x, moreover,

depends continuously on C in A, for fixed x # 0, and as 4 + 0, by (4)

and (13), r'/r + z'/z * (1-Y)/x and the differential equation for y

becomes a form of Bessel's, with solution

(A4) lim(x - )(x/ 2 )Y/2 I I/ (x)

h i m 2' x = r(x.4+0
1 -Y

This shows x Y(x) to tend to a well-defined function of x on D(0) as

F+ 0, and since a0 (x;C) and b0 (x;S) have been shown to tend to limit

i -19-



functions on D(0) as E + 0, if follows from (A3) that the functions

A/(PC) and B/(P ) must tend to limits as E + 0 and E + 0; of course,

these limits might depend on the direction of approach, which is determined

by arg x.

In sum,

am A b Ba = - bo(X;)

where A/(PC), B/(PC) have limits as C + 0 and + 0, while the limits as

C + 0 of a0 , b0  are defined on D(0) and tend there to limits as

lxi +

-20-
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